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Abstract

The Web browser is undoubtedly the single most impor-
tant application in the mobile ecosystem. An average user
spends 72 minutes each day using the mobile Web browser.
Web browser internal engines (e.g., WebKit) are also growing
in importance because they provide a common substrate for
developing various mobile Web applications. In a user-driven,
interactive, and latency-sensitive environment, the browser’s
performance is crucial. However, the battery-constrained na-
ture of mobile devices limits the performance that we can de-
liver for mobile Web browsing. As traditional general-purpose
techniques to improve performance and energy efficiency fall
short, we must employ domain-specific knowledge while still
maintaining general-purpose flexibility.

In this paper, we first perform design-space exploration
to identify appropriate general-purpose architectures that
uniquely fit the characteristics of a popular Web browsing
engine. Despite our best effort, we discover sources of energy
inefficiency in these customized general-purpose architectures.
To mitigate these inefficiencies, we propose, synthesize, and
evaluate two new domain-specific specializations, called the
Style Resolution Unit and the Browser Engine Cache. Our opti-
mizations boost energy efficiency and at the same time improve
mobile Web browsing performance. As emerging mobile work-
loads increasingly rely more on Web browser technologies, the
type of optimizations we propose will become important in the
future and are likely to have lasting widespread impact.

1. Introduction

The proliferation of mobile devices and the fast penetration
of new Web technologies (such as HTMLS) has ushered in a
new era of mobile Web browsing. Mobile users now spend
a significant amount of time on the Web browser every day.
A study conducted by our industry partner reports that the
browser occupies 63% of the window focus time on their
employees’ mobile devices, as shown in Fig. 1a. As a general
trend, comScore shows that mobile users prefer Web browsers
over native applications for important application domains
such as online e-commerce and electronic news feeds [1].

In the user-centric mobile Web browsing context, delivering
high performance is critical to end users’ quality-of-service
experience. Studies in 2013 indicate that 71% of mobile Web
users expect website performance on their mobile devices to
be not worse than their desktop experience—up from 58% in
2009 [5]. Traditionally, Web browsing performance has been
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Fig. 1: Mobile Web browser share study conducted by our industry
research partner on their employees’ devices [2]. Similar observa-
tions were reported by NVIDIA on Tegra-based mobile handsets [3,4].

network limited. However, this trend is changing. With about
10X improvement in round-trip time from 3G to LTE, network
latency is no longer the only performance bottleneck [51].
Prior work has shown that over the past decade, network
technology advancements have managed to keep webpage
transmission overhead almost stable, whereas the client-side
computational requirements have increased by as much as
10X [78]. Fig. 1b confirms that the browser consumes a sig-
nificant portion of the CPU time. Similarly, other research
reports over 80% CPU usage for mobile browsing [51].

Providing high processing capability in mobile CPUs is
challenging due to the limited battery capacity. Recent studies
suggested that the advancement in Lithium-ion battery den-
sity has slowed down significantly, and that battery capacity
will be mostly limited by its volume [6,72]. Under such a
constraint, we are now faced with a challenge. On one hand,
the energy budget for mobile devices is unlikely to drastically
increase in the short term. On the other hand, mobile proces-
sors are becoming power hungry. Core designs have not only
gone from in-order to out-of-order (e.g., ARM Cortex-AS8 to
A15), but they have also gone multicore (e.g., Exynos 5410 in
Samsung Galaxy S4 has eight cores). Experiments conducted
by Carroll et al. suggested that processor power of mobile
Web browsing doubled from 2010 to 2013 [38,39].

Our work aspires to bridge the widening gap between high-
performance and energy-constrained mobile processor designs
for Web browsing. Domain-specific specializations have long
been known to be extremely energy efficient [57,71,76]. Re-
cent proposals in data computation domains (such as H.264 en-
coding [49] and convolution [67]) have begun showing that it
is critical and feasible to balance the efficiency of application-
specific specializations with general-purpose programmability.
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Fig. 2: Web browser overview.

Sharing the same architecture design philosophy, we pro-
pose the WebCore, a general-purpose core customized and
specialized for the mobile Web browsing workload. In compar-
ison to prior work that either takes a fully software approach
on general-purpose processors [41, 62] or a fully hardware
specialization approach [34], our design strikes a balance be-
tween the two. On one hand, WebCore retains the flexibility
and programmability of a general-purpose core. It naturally
fits in the multicore SoC that is already common in today’s
mainstream mobile devices. On the other hand, it achieves
energy-efficiency improvement via modest hardware special-
izations that create closely coupled datapath and data storage.

We begin by examining existing general purpose designs
for the mobile Web browsing workload. Through exhaustive
design space exploration, we find that existing general pur-
pose designs bear inherent sources of energy-inefficiency. In
particular, instruction delivery and data feeding are two major
bottlenecks. We show that customizing them by tuning key
design parameters achieves better energy efficiency (Sec. 4).

Building on the customized general-purpose baseline, we
develop specialized hardware to further overcome the instruc-
tion delivery and data feeding bottlenecks (Sec. 5). We propose
two new optimizations: the “Style Resolution Unit” (SRU) and
a “Software-Managed Browser Engine Cache.” The SRU is
a software-assisted hardware accelerator for the critical style-
resolution kernel within the Web browser engine. It exploits
fine-grained parallelism that aggregates enough computation
to offset the instruction and data communication overhead.
The proposed cache structure exploits the unique data locality
of the browser engine’s principal data structures. It is a small
and fast memory that achieves a high hit rate for the important
data structures, but with extremely low accessing energy.

Our results show that customizations alone on the exist-
ing general-purpose mobile processor design lead to 22.2%
performance improvement and 18.6% energy saving. Our spe-
cialization techniques achieve an additional 9.2% performance
improvement and 22.2% overall energy saving; the acceler-
ated portion itself achieves up to 10X speedup. Finally, we
also show that our specialization incurs negligible area over-
head. More importantly, such overhead, if dedicated to tuning
already existing general-purpose architectural features (e.g.,
caches), lead to much lower energy-efficiency improvements.
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2. Web Browser Background and Overview

We first describe the Web browser engine’s computation ker-
nels and their communication patterns. Such understanding
helps us design effective customizations and specializations,
such as those described in the later sections. Nearly all main-
stream browser engines fit into our description. In addition,
we show each kernel’s performance and energy breakdown to
show their importance and demonstrate our study’s coverage.
Browser engine kernels Fig. 2 shows the overall flow
of execution within any typical Web browser. The engine
has two core modules: the browser engine (e.g., WebKit for
Chrome and Gecko for Firefox) and the JavaScript engine.
In this work, we focus on the internals of the Web browser
engine. The JavaScript engine’s performance that involves the
compiler, garbage collector, etc., is a separate issue beyond the
scope of this work. Please refer to the Related Work section
(Sec. 8) for a more elaborate discussion about JavaScript.
The browser engine mainly consists of four kernels: Dom,
Style, Layout, and Render. The kernels, shown in boxes, pro-
cess the webpage and prepare pixels for a GPU to paint. The
figure also shows the important data structures that the kernels
consume. The DOM tree, CSS style rules, and Render tree are
those important data structures, and they are heavily shared
across the kernels. The data structures are shown in circles
with arrows indicating information flow between the kernels.
The Dom kernel is in charge of parsing the webpage con-
tents. Specifically, it constructs the DOM tree from the HTML
files, and extracts the CSS style rules from the CSS files. Given
the DOM tree and CSS style rules, the Style kernel computes
the webpage’s style information and stores the results in the
render tree. Each render tree node corresponds to a visible
element in the webpage. Once the style information of each
webpage element is calculated, the Layout kernel recursively
traverses the render tree to decide each visible element’s po-
sition information based on each element’s size and relative
positioning. The final < x,y > coordinates are stored back
into the render tree. Eventually, the Render kernel examines
the render tree to decide the z-ordering of each visible element
so that they can be displayed in the correct overlapping order.
Performance Fig. 3 shows the average execution time
breakdown of the browser engine kernels. The measured data
was gathered on a single-core Cortex-A15 processor in the
Exynos 5410 SoC [7] while navigating the benchmarked web-



pages described in Sec. 3 using Chromium [8]. On average,
the kernels consume 75% percent of the total execution time.
The Style kernel is the most time-consuming task. Please refer
to Sec. 7 for discussion on multicores for Web browsing.
Energy Fig. 4 shows the average CPU energy consump-
tion breakdown of the different Web browser engine kernels
using the same experimental setup as above. We measure
CPU power using National Instruments’ X-series 6366 DAQ
at 1,000 samples per second. The Style resolution kernel con-
sistently consumes the most energy, typically around 35%.

3. Experimental Setup and Validation

Before we begin our investigation, we describe our software
infrastructure, specifically outlining our careful selection of
representative webpages to study, and the processor simulator.

Web browser engine We focus on the popular WebKit [9]
browser engine used in Google Chromium (Version 30.0) for
our studies. WebK:it is also widely used by other popular
mobile browsers, such as Apple’s Safari and Opera.

Benchmarked webpages We pay close attention to the
choice of webpages to ensure that the WebCore design is not
misled. We mine through the top 10,000 websites as ranked
by Alexa [10] and pick the 12 most representative websites.
All except one happen to rank among Alexa’s top 25 websites.

We consider not only the mobile version of the 12 websites,
but also their desktop counterparts. Many mobile users still
prefer desktop-version websites for their richer content and
experience [11, 12]. Moreover, many mobile devices, espe-
cially tablets, typically load the desktop version of webpages
by default. As webpage sizes exceed 1 MB [13], we must
study mobile processor architectures that can process more
complex content and not just simple mobile webpages.

We study 24 distinct webpages. The 24 benchmarked web-
pages are representative because they capture the webpage
variations in both webpage-inherent and microarchitecture-
dependent features. To prove this, we performed principal
component analysis (PCA), which is a statistical method that
reduces the number of inputs without losing generality [42].
PCA transforms the original inputs into a set of principal com-
ponents (PC) that are linear combinations of the inputs. In
our study, PCA calculates four PCs from about 400 distinct
features. These four PCs account for 70% of the variance
across all of the original 10,000 webpages. Fig. 5a shows
the results for two major components, PC1 and PC2. IPC
(microarchitecture-dependent feature) is the single most sig-
nificant metric in PC1, and the number of DOM tree nodes
(webpage-inherent feature) is the most significant metric in
PC2. The triangular dots represent our webpages. They cover
a very large spread of the top 10,000 webpages in the Internet.

Load time Unless stated otherwise, we define webpage
load time as the amount of execution time that elapses until
the onload event is triggered by the Web browser.

Simulators We assume the x86 instruction set architecture
(ISA) for our study. Prior work shows that the ISA does not sig-
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Fig. 5: Benchmark representativeness analysis.

nificantly impact energy efficiency for mobile workloads [35].
Therefore, we believe that our microarchitecture explorations
are generally valid across ISAs. We use Marss86 [66], a cycle-
accurate simulator, in full-system mode to faithfully model
all the network and OS activity. Performance counters from
Marss86 are fed into McPAT [55] for power estimation.

4. Customizing the General-Purpose Cores

The industry has built both in-order (such as ARM Cortex
A7 [14] and Intel Saltwell [15]) and out-of-order (such as
ARM Cortex A15 [16] and Intel Silvermont [17]) cores for
mobile processors. By exploring the vast design space by vary-
ing design parameters (Sec. 4.1), we find that the out-of-order
designs provide more flexibility for energy versus performance
trade-offs than in-order designs (Sec. 4.2). Within the out-of-
order design space, we further observe that existing mobile
processor configurations bear inherent sources of energy ineffi-
ciency in instruction delivery and data feeding. We customize
the general-purpose cores by tuning corresponding design
parameters to mitigate these inefficiencies (Sec. 4.3).

4.1. The Design Space Specification

We define the set of tunable microarchitectural parameters in
Table 1. We restrict each parameter’s range to limit the total
exploration space. For example, we restrict the values of func-
tionally related parameters (e.g., issue width and the number
of functional units) from reaching a completely unbalanced
design [37]. In our study, we consider over 3 billion designs.

We intentionally relax the design parameters beyond the
current mobile systems in order to allow an exhaustive design
space exploration. For example, we consider up to 128 KB
L1 cache design whereas most L1 caches in existing mobile
processors are 32 KB in size. Also, since thermal design
power (TDP) is important for mobile SoCs, we eliminate
overly aggressive designs with more than 2 W TDP.

We assume a fixed core frequency in our design-space ex-
ploration. We use 1.6 GHz, a common value in mobile proces-
sors [18, 19], to further prune the exploration space. However,
because the latency of both the L1 and L2 caches can still vary,
we include different cache designs in the exploration space.



Table 1: Microarchitecture design-space parameters (i::j::k denotes
values ranging from i to k at steps of j)

Parameters Measure Range
Issue width count 1::1::4

# Functional units count 1::1::4
Load queue size # entries 4::4::16
Store queue size # entries 4::4::16
Branch prediction size log,(#entries) 1::1::10
ROB size # entries 8::8::128
# Physical registers # entries 5::5::140
L1 I-cache size log>(KB) 317
L1 I-cache delay cycles 1::1::3
L1 D-cache size log>(KB) 317
L1 D-cache delay cycles 1::1::3
L2 cache size log,(KB) 7::1::10
L2 cache delay cycles 16,32,64

We use a constant memory latency to model the memory
subsystem because we do not observe significant impact of
the memory system on the mobile Web browsing workload.
According to hardware measurements on the Cortex-A15 pro-
cessor using ARM’s performance monitoring tool Stream-
line [20], the MPKI for the L2 cache across all the webpages
is below 5. We observe similar low L2 MPKI, i.e. low main
memory pressure, in our simulations. Therefore, we use a
simpler memory system to further trim the search space.

Since we consider billions of design points, it is not fea-
sible to simulate all of them simply due to time constraints.
Therefore, we leverage regression modeling techniques [50] to
predict the performance and power consumption of various de-
sign points in the space. Such effort has been used successfully
in the past for architecture design-space exploration [46,54].

In order to derive general conclusions about the design
space and optimize for the common case, in this section we
present only our in-depth analysis for the representative web-
site www . cnn . com. Fig. 5b compares www . cnn . com with
other webpages to demonstrate that it is indeed representative
of the other benchmarked webpages. The x-axis and y-axis rep-
resent the number of DOM tree nodes and the number of class
attributes in HTML. These are the two webpage characteristics
that are most correlated with a webpage’s load time and energy
consumption [78]. As the figure shows, www.cnn.com is
roughly the centroid of the benchmarked webpages, and thus
we use it as a representative webpage for the common case.

We find that 2,000 uniformly at random (UAR) samples
of microarchitecture configurations from the design space
are sufficient in our case to construct robust models. We
construct the performance and power models for the four
kernels described in Sec. 2, as well as the entire Web browser
engine. In general, the out-of-order models’ error rates are
below 6.0%. The in-order models are more accurate because
of their simpler design. On average, the in-order performance
and power models’ errors are within 5% and 2%, respectively.

Table 2: Microarchitecture configurations for the selected design
points in Fig. 6 that represent the different energy-delay trade-offs.

P1:000 PI1:In-O P2

Issue width 1 2 3
# Functional units 2 2 3
Load queue size (# entries) 4 N/A 16
Store queue size (# entries) 4 N/A 16

Branch prediction size (# entries) 1024 1024 128

ROB size (# entries) 128 N/A 128
# Physical registers 128 N/A 140
L1 I-cache size (KB) 64 128 128
L1 I-cache delay (cycles) 1 2 2

L1 D-cache size (KB) 8 64 64
L1 D-cache delay (cycles) 1 1 1

L2 cache size (KB) 256 1024 1024
L2 cache delay (cycles) 16 16 16

4.2, In-order vs. Out-of-order Design Space Exploration

In this section, we explore both the in-order and out-of-order
space to identify the optimal general-purpose design for the
entire browser engine. We find that out-of-order cores can bet-
ter balance performance with energy, and are therefore better
designs for mobile Web browsing. In order to understand the
fundamental reasons, we study the individual Web browser
engine kernels and demonstrate that the out-of-order logic can
cover the variances across the different kernels through its
complex execution logic. In contrast, in-order designs either
overestimate or underestimate the hardware requirements.
Entire browser engine Fig. 6 shows the Pareto-optimal
frontiers of both in-order and out-of-order designs between en-
ergy and performance. We use energy per instruction (EPI) for
the energy metric, and million instructions per second (MIPS)
as the performance metric. To clearly illustrate the energy-
performance trade-offs, we show only the Pareto-optimal de-
sign frontiers. Design points on the frontier reflect different
optimal design decisions given specific performance/energy
goals. The Pareto-optimal is more general than the (sometimes
overly specific) EDP, ED*P metrics, etc. Design configura-
tions optimized for such metrics have been known to corre-
spond to different points on the Pareto-optimal frontier [31].
We make two important observations from Fig. 6. First, the
out-of-order design space offers a much larger performance
range (~1 BIPS between markers P1 and P2, see top x-axis)
than the in-order design space (< 0.5 BIPS), which reflects the
out-of-order’s flexibility in design decisions. Second, the out-
of-order design frontier is flatter around the 4-second webpage
load time range (see marker P1) than in the in-order design,
which indicates that the out-of-order design has a much lower
marginal energy cost. The observation indicates that processor
architects can make design decisions based on the different
performance goals without too much concern about the energy
budget. In contrast, the in-order design has a low marginal
performance value (i.e., high marginal cost of energy).
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Fig. 6: In-order vs. out-of-order designs.

To understand the major limitation of the in-order design,
we compare the microarchitecture configurations of the in-
order and out-of-order designs at the crossover point P1
in Fig. 6. Table 2 lists both configurations. Even though
both designs achieve the same performance, the in-order de-
sign has much larger L1 and L2 cache sizes. Therefore, the
in-order design at P1 provides better instruction delivery and
data feeding than the out-of-order design. Thus, we conclude
that it is the inability of the in-order execution logic that in-
hibits better performance than its out-of-order counterpart.

Going beyond the P1 crossover point (i.e., < 4 seconds),
the in-order design quickly shifts toward a 4-wide issue with
a much larger L2 cache. However, such designs have a very
high marginal energy cost, which can lead to energy-inefficient
designs as compared to their corresponding out-of-order coun-
terparts. We do not show the data due to space constraints.

Individual kernels To further understand why the in-order
design is unsuitable for Web browser workloads, we study the
individual kernels’ behavior. Fig. 7 and Fig. 8 show the Pareto-
optimal frontiers of the in-order and out-of-order design space
for each Web browser engine kernel. The kernel behavior
is remarkably different across the two design spaces. In the
in-order design, the kernel trade-offs are sharper, and more
distinct from one another. For example, to achieve the same
performance level at 800 MIPS, the EPI difference between
the Style and Layout kernels is ~300 pJ. In contrast, the differ-
ence is minimal (< 50 pJ) in the out-of-order design space.

Because the kernel difference in the in-order designs is more
pronounced than in the out-of-order designs, we conclude that
the different kernels require different in-order designs for a
given fixed-performance goal. As we push toward more perfor-
mance in the in-order design space, some kernels stop scaling
gracefully on the energy versus delay curve. For example,
among the four kernels, only the Layout kernel scales well be-
yond 850 MIPS. In contrast, the Render kernel’s MIPS range
is severely limited between 460 MIPS and 650 MIPS. Since all
kernels are on the critical path of webpage load performance,
the kernels that do not scale gracefully quickly become critical
performance bottlenecks, which results in the low marginal
performance improvement for the entire Web browser engine.

Fig. 7: Per-kernel in-order designs.

Fig. 8: Per-kernel out-of-order designs.

However, such pronounced kernel variance is not present
in out-of-order designs. For example, at 1200 MIPS, which
is the “knee of the curve(s),” all the kernels have similar EPIs.
Upon inspection, we find that all kernels have similar microar-
chitecture structures. All the kernels require a large number of
physical registers to resolve dependencies, and none of the ker-
nels need the widest issue width (i.e., 4-wide), indicating that
the out-of-order engine can explore the ILP for each kernel
without bias. We do not show the data due to space constraints.

4.3. Energy Inefficiency in the Customized Core Designs

In this section, we show that instruction delivery and data feed-
ing are the most sensitive components to energy efficiency in
the out-of-order design. We examine two specific optimization
points (i.e., P1 and P2) in Fig. 6 that represent optimized de-
signs for different performance and power goals. P1 is an out-
of-order design optimized for minimal energy consumption.
P2 focuses on minimal energy consumption at 1500 MIPS.
We find that the P1 and P2 configurations are different from
current mobile processor designs. Table 2 summarizes the
microarchitecture parameters optimized under the two opti-
mization goals. Current mobile processors have a small L1
instruction/data cache that is typically 32 KB in size. However,
both P1 and P2 require a much larger L1 instruction cache.
The performance-oriented design P2 also requires a larger data
cache. In addition, the L2 cache in current mobile SoCs is
typically 1 MB [16, 17], which accommodates all the applica-
tions on the core. However, the Web browsing workload alone
requires a 1 MB L2 cache at P2. Let us explain our findings.
Instruction delivery Delivering instructions for execution
is a major issue in the P1 and P2 designs. Both designs require
a large L1 instruction cache and a large number of physical
registers to alleviate the pressure on instruction fetching and
dispatching. For instance, our results show that a 128 KB
instruction cache reduces MPKI by 75% compared with an
8 KB cache. Although a larger L1 cache is more expensive to
access, it reduces a significant amount of L2 cache accesses.
In effect, it increases the L2 cache size. The insight here is
useful in avoiding the excessive cost of the large L2 cache
accesses in terms of static and dynamic power consumption.
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Data feeding Delivering data for computation is not a
bottleneck when we optimize for energy (i.e., P1). However,
they become critical as we shift the design goal toward perfor-
mance. Optimizing for P2 in Fig. 6 necessitates a 64 KB data
cache. It achieves a low miss ratio of only 7.7%. Similar to
instruction delivery, a large data cache is also more favorable
to energy efficiency than having than a large L2 cache. The
reasons for a large data cache are twofold. First, processing
webpages typically involves a large footprint on the principal
data structures (Sec. 2). For example, profiling results show
that the average data reuse distance for DOM tree accesses
(excluding other memory operations interleaved with DOM
accesses) is about 4 KB. Second, different kernels are inter-
leaved with each other during execution, which increases the
effective data reuse distances of the important data structures.

5. Specializing the Customized Cores

Unusual design parameters in a processor core tuned for the
mobile Web browsing workload indicates that both instruc-
tion delivery and data feeding are critical to guarantee high
performance while still being energy efficient. In this sec-
tion, we propose hardware and software collaborative mech-
anisms that mitigate the instruction delivery and data feed-
ing inefficiencies in the customized out-of-order core designs.
We introduce two new hardware enhancements, called the
Style Resolution Unit (Sec. 5.1) and the Browser Engine
Cache (Sec. 5.2). These new hardware structures are accessed
via a set of high-level language APIs implemented as a runtime
library (Sec. 5.3). As the Fig. 9 shows, the hardware supports
fast and energy-efficient execution and data communication,
and the library manages the hardware layer and thus eases the
development effort for the WebCore. We first focus on the
hardware design and then describe the runtime support.

5.1. Style Resolution Unit

The Style kernel takes about one-third of the execution time
and the energy consumption of webpage loading as shown
in Sec. 2. Therefore, optimizing the Style kernel would im-
prove the overall energy efficiency the most. In order to miti-
gate the instruction delivery and data communication overhead
of the Style kernel, we propose a special functional unit called
the Style Resolution Unit (SRU) that is tightly coupled with
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Fig. 10: SRU coupled with scratchpad memories.

a small scratchpad memory. The SRU exploits fine-grained
parallelism to reduce the amount of instructions and potential
divergences. The scratchpad memory reduces data communi-
cation pressure by bringing operands closer to the SRU.

Overview The Sryle kernel consists of two phases: a
matching phase and an applying phase. Previous work [41,62]
focuses on parallelizing the matching phase. However, in our
profiling, we find that the applying phase takes nearly twice
as long to execute as the matching phase. Therefore, we focus
on the applying phase. The applying phase takes in a set of
CSS rules as input, applies each rule in the correct cascading
order [21] to calculate each style property’s final value (e.g.,
the exact-color RGB values, width pixels). The final values
are stored back to the render tree (Fig. 2).

The key observation we make in the applying phase is that
there are two types of inherent parallelism: “rule-level par-
allelism” (RLP) and “property-level parallelism” (PLP). Im-
proving the energy efficiency of the Style kernel requires us
to exploit both forms of parallelism in order to reduce the
control-flow divergence and data communication overheads.
Our profiling results indicate that both control flow and mem-
ory instructions put together constitute 80% of the total in-
structions that are executed within the Style kernel.

RLP comes from the following. In order to maintain the
correct cascading order, each rule contained in the input data
structure must be sequentially iterated from the lowest priority
to the highest, so that the higher-priority rules can override
the lower-priority rules. However, in reality, we could specula-
tively apply the rules with different priorities in parallel, and
select the one with the highest priority.

PLP follows RLP. Each rule has multiple properties, and
each property is examined by the engine to set the correspond-
ing data field in the render tree according to its property ID.
Because properties are independent of one another, handling
of their processing routines can be dealt with in parallel.

Proposed design We propose a parallel hardware unit
that exploits both RLP and PLP, called the Style Resolution
Unit. The SRU aggregates enough computations to reduce
control-flow divergences and increase arithmetic intensity. It
is accompanied by data storage units for both input and output.
Note that it is not easy to exploit software-level parallelism for
PLP and RLP because of the complex control flow, memory
aliasing, and severe loop-carried dependencies.
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Fig. 10 shows the structure of the SRU with scratchpad
memory for input and output data. SRU has multiple lanes,
with each lane dealing with one CSS property. Assume Rule i
and Rule j are two rules from the input that are residing in
the scratchpad memory. Rule i has higher priority than Rule j.
Prop [ and Prop m are two properties in Rule i. Similarly,
Rule j has properties Prop k and Prop m. Prop / and Prop & can
be executed in parallel using different SRU lanes because they
do not conflict with each other. However, Prop m is present
in both rules, and as such it causes an SRU lane conflict, in
which case the MUX selects the property from the rule with
the highest priority, which in our example is Rule i.

Design considerations A hardware implementation can
have only a fixed amount of resources. Therefore, the number
of SRU lanes and the size of the scratchpad memory is limited.
Prior work [78] shows that the number of matched CSS rules
and the number of properties in a rule can vary from one
webpage to another. As such, a fixed design may overfeed or
underfeed the SRU if the resources are not allocated properly.

We profile the webpages to determine the appropriate
amount of resource allocation required for the SRU. Profiling
indicates that 90% of the time, the RLP is below or equal to 4
(Fig. 11a). Therefore, our design’s scratchpad memory only
stores up to four styles. Similarly, 32 hot CSS properties cover
about 70% of the commonly used properties (Fig. 11b). Thus,
we implement a 32-wide SRU where each lane handles one
hot CSS property. Due to these considerations, the input and
output scratchpad memories are each 1 KB in size.

Furthermore, not all of the properties are delegated to the
SRU. For example, some style properties require information
on the parent and sibling nodes. To avoid complex hardware
design for recursions and loops with unknown iterations, we do
not implement them in our SRU prototype. The runtime library
performs these checks, which we discuss later in Sec. 5.3.
Despite the trade-offs we make, about 72.4% of the style rules
across all the benchmarked webpages can utilize the SRU.

5.2. Software-Managed Browser Engine Cache

The DOM tree and Render tree are the two most important data
structures because they are shared across different kernels, as
shown in Fig. 2. We propose the Browser Engine Cache to im-
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Fig. 12: DOM tree access behavior across webpages.

prove the energy-efficiency of accessing these data structures.
In Sec. 8, we discuss specializations for performance.

Our cache design is motivated by the unique access patterns
to the DOM tree and render tree. They have strong locality
that can benefit from a small and energy-efficient LO cache
memory, rather than the large power-hungry traditional caches.

The problem of the traditional cache is best embodied in
the performance-oriented design P2 in Table 2. P2 requires
a larger data cache (64 KB) compared to a traditional mobile
core. Although a large cache achieves a high hit rate of 93%),
it leads to almost one-fourth of the total energy consumption.

Overview The browser engine cache consists of a DOM
cache and a Render cache. We use the DOM to explain our
locality observation. Similar analysis and design principles
also apply to the render cache. Fig. 12a shows the cumula-
tive distribution of DOM tree node reuse. Each (x,y) point
corresponds to a portion of DOM tree nodes (y) that are con-
secutively reused at least a certain number of times (x). About
90% of the DOM tree nodes are consecutively reused at least
three times, which reflects strong data locality. This indicates
that a very small cache can probably achieve the same hit rate
as a regular cache, but with much lower power.

Such strong data reuse is due to intensive DOM tree traver-
sals in the rendering engine. To illustrate this, Fig. 13 shows
two representative data access patterns to the DOM tree from
www.sina.com and www.slashdot.org. Each (x,y)
point is read as follows. The x-th access to the DOM tree oper-
ated on the y-th DOM node. We observe a common streaming
pattern. The browser engine typically operates on one DOM
tree node heavily and traverses to the next one. Many kernels
require such traversals. For example, in order to match CSS
rules with descendant selectors such as “div p,” which selects
any <p> element that is a descendant of <div> in the DOM tree,
the Style kernel must traverse the DOM tree, one node at a
time, to identify the inheritance relation between two nodes.

Proposed design We propose the DOM cache to capture
the DOM tree data locality. It sits between the processor and
the L1 cache, effectively behaving as an LO cache. Each cache
line contains the entire data for one DOM tree node, which
is 698 bytes in our design. Because each node has multiple
attributes that must be individually accessed, we implement
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Fig. 13: Representative DOM tree access patterns.

each cache line as a set of independently addressable registers,
where each register holds one attribute of the DOM tree node.

Design considerations It is possible to implement the
DOM cache entirely in hardware, similar to a normal data
cache. However, we choose to implement it as a “software-
managed” cache—i.e., the data is physically stored in hardware
memory, and the software performs the actual cache manage-
ment, such as insertion and replacement, as we will discuss
in Sec. 5.3. Prior work has demonstrated effective software-
managed cache implementations [48].

Our motivation for a software-managed cache is to avoid the
complexity of a hardware cache. Typically, the cache involves
hardware circuitry whose overhead can be high, especially for
extremely small cache sizes. Moreover, the software overhead
is relatively insignificant for the following reasons.

First, a simple replacement policy that always evicts the
earliest inserted line is sufficient. Due to the streaming pattern
shown in Fig. 13, DOM tree nodes are rarely re-referenced
soon after the browser engine moves past them. Therefore, a
simple FIFO design is almost as effective as the least recently
used policy, but with much less management overhead.

Second, a very small number of DOM cache entries guaran-
tee a high hit rate. Therefore, the cache-hit lookup overhead
is minimal. Fig. 12b shows how the hit rate changes with the
number of entries allocated for the DOM tree. The curve rep-
resents the average hit rate, and the error bars represent the
standard deviations across different webpages. Across all the
webpages, a 4-entry design can achieve about 85% hit rate,
and so we use this configuration. In this sense, the DOM cache
is effectively a single set, 4-way fully associative cache. Sim-
ilarly, the render cache contains two entries (i.e., two cache
lines). On average, it achieves over 90% hit rate.

5.3. Software Support and Programmability

The SRU and browser engine cache can be accessed via a
small set of instruction extensions to the general-purpose ISA.
In order to abstract the low-level details away from application
developers, we provide a set of library APIs in high-level lan-
guages. Application developers use the APIs without the need
for being aware of the existence of the specialized hardware.
It is important to note that unlike conventional programming
models for accelerators, where the task invocation and com-

pletion semantics are tightly coupled [40], WebCore APIs can
be freely mixed in with high-level programming.

SRU Programmers issue Style_Apply (Id) to trigger
the style resolution task. Since not all the CSS properties
are implemented in the SRU (as discussed in Sec. 5.1), the
runtime library must first examine all the input properties. For
properties that can be offloaded to the SRU, the library loads
related data into the SRU’s scratchpad memory. For those
“unaccelerated” properties, the runtime creates the necessary
compensation code. Specifically, we propose relying on the
existing software implementation as a fail-safe fallback mech-
anism. Once the style resolution results are generated, the
results can be copied out to the output scratchpad memory.

Browser Engine Cache  Application developers is-
sue DOM_LD (Id, attr) and DOM_ST (Id, attr) to
access a particular attribute of a particular DOM tree node.
The runtime library performs the actual hardware memory
accesses as well as cache management, such as replacement
and insertion. For example, the runtime needs to maintain an
array, similar to the tag array in a regular cache, to keep track
of which DOM nodes are in the cache and whether they are
modified. Effectively, the runtime library implements a cache
simulator. However, the runtime overhead is negligible due to
the simple cache design (as described in Sec. 5.2).

6. WebCore Evaluation

In this section, we first present the power and timing overhead
analysis of the optimizations (Sec. 6.1). We then evaluate the
energy-efficiency implications of the SRU and the browser
engine cache individually (Sec. 6.2, Sec. 6.3). In the end,
we show the energy-efficiency improvement combining both
optimizations (Sec. 6.4). In particular, we show that our spe-
cializations can achieve significantly better energy efficiency
than simply dedicating the same amount of area and power
overhead to tune the conventional general-purpose cores.

We evaluate our optimizations against three designs, D1
through D3. D1 refers to the energy-conscious design (P1) that
we explored in Fig. 6. Similarly, D2 refers to the performance-
oriented design (P2) in Fig. 6. D3 mimics the common design
configuration of current out-of-order mobile processors. We
configure D3 as a three-issue out-of-order core with 32-entry
load queue and store queue, 140 ROB entries, and 140 phys-
ical registers. It has a 32 KB, 1-cycle latency L1 data and
instruction cache, and a 1 MB, 16-cycle latency L2 cache.

6.1. Overhead Analysis

We use CACTI v5.3 [22] to estimate the memory structures
overhead. We implement the SRU in Verilog and synthesize
our design in 28 nm technology using the Synposys toolchain.

Area The size of SRU’s scratchpad memory is 1 KB.
The DOM cache size is 2,792 bytes. The render cache size
is 1,036 bytes. The hardware requirements for the SRU are
mainly comparators and MUXes to deal with control flow, and
simple adders with constants inputs to compute each CSS prop-



erty’s final value. In total, the area overhead of the memory
structures and the SRU logic is about 0.59 mm?, which is neg-
ligible compared to typical mobile SoC size (e.g., Samsung’s
Exynos 5410 SoC has a total die area size of 122 mm? [23]).

Power The synthesis reports that the SRU logic introduces
70 mW total power under typical stimuli. The browser en-
gine cache and the SRU scratchpad memory add 7.2 mW and
2.4 mW to the dynamic power, respectively. They are insignif-
icant compared to power consumption for Web browsing (in
our measurements, a single core Cortex-A15 consumes about
1 W for webpage loading). Clocking gating can reduce the
power consumption further [56]. But we are conservative in
our analysis and do not assume such optimistic benefits.

Timing Both the browser engine cache and SRU scratch-
pad memory can be accessed in one cycle, which is the same
as the fastest L1 cache latency in our design space. The synthe-
sis tool reports that the SRU logic latency is about 16 cycles
under 1.6 GHz. Later in our performance evaluation, we con-
servatively assume the SRU logic is not pipelined.

Software The software overhead mainly includes cache
management and SRU compensation code creation. The over-
head varies depending on individual webpage runtime behav-
iors. We model these overheads in our performance evaluation
and discuss their impact along with the improvements.

6.2. Style Resolution Unit

Our SRU prototype design achieves on average 3.5X, and up
to 10X, speedup for the accelerated style applying phase. The
improvements vary because of individual webpage characteris-
tics. Due to the space constraints, in general, we mostly focus
on the overall browser-level workload improvements.

Fig. 14 shows SRU’s performance improvement for
the Style kernel and the entire webpage loading on the
performance-oriented design D2 in Fig. 6. The average perfor-
mance improvement of the Style kernel is 33.4% and 37.8%
for desktop and mobile webpages, respectively. Generally, we
find that mobile webpages benefit slightly more from the SRU
because they tend to be less diversified in webpage styling,
and therefore the SRU has higher coverage.

Because different webpages spend different portions of time
in the Style kernel, the overall improvements vary across web-
pages. For example, cnn spends only 14% of its execution
time in the Style kernel during the entire run. Therefore, its
62% improvement in the Style kernel translates to an overall
improvement of only 7%. On average, the SRU improves the
entire webpage load time by 13.1% on all the webpages.

The SRU not only improves performance but also reduces
energy consumption. The right y-axis of Fig. 14 shows the
energy saving for the entire webpage loading. Webpages are
sorted according to the energy savings. On average, SRU
results in 13.4% energy saving for all webpages.

Fig. 14 also shows the oracle improvement if the entire
applying phase can be delegated to the SRU (i.e., no hardware
resource constraints). Desktop webpages have much higher

o]
B
o

M Style Kernel

;\? {3 Entire Loading
E Oracle Gain +
@ 601 430
5 =
g i 5
- 5
E£40 420 <
©
: 3
< 7 A 3
€20 . 105
g z ‘ &
o E A0
e 7
0 g g BT, B
SEL5EE5ER88L §
20aNgEmzOEOS~3 ©
@ o oz0s5 o £
© £ 92 O oo
> < >
Desktop Webpages Mobile Webpages

Fig. 14: Performance and energy improvement of the SRU.

oracle gain than mobile webpages. The software fall-back
mechanism is more frequently triggered in desktop-version
webpages due to their diversity in styling webpages. This
also implies the potential benefits of reconfiguring the SRU
according to different webpages. An SRU that is customized
for mobile webpages could potentially be much smaller.

We apply the SRU to different designs to show its general
applicability. For loading an entire webpage, on a current
mobile processor design (D3), the SRU improves performance
by 10.0% and reduces energy consumption by 10.3%. On an
energy-conscious design (D1), it improves performance by
8.4% and reduces energy consumption by 11.6%.

6.3. Browser Engine Cache

Fig. 15 shows the energy reduction from using the browser en-
gine cache. Mobile webpages achieve less energy saving than
desktop-version webpages because of their smaller memory
footprint. On average, the performance-oriented design (D2)
achieves 14.4% energy savings. Since the energy-conscious
(D1) and current design (D3) have smaller caches, the energy
consumption caused by the data cache is less, and therefore
benefits less from the browser engine cache. On average, their
energy consumption reduces by 5.9% and 9.3%, respectively.
We find that the DOM tree and render tree access intensity
largely determines the amount of energy saving. The right
y-axis in Fig. 15 shows the amount of L1 data cache traffic
that is attributed to accessing both data structures. In the most
extreme case, about 80% of the data accesses for loading cnn
touch the DOM tree and the render tree. Therefore, it achieves
the largest energy saving. There are some outliers in desk-
top webpages. For example, sina has a much higher traffic
(~60%) than twitter (~40%), but with similar energy sav-
ings. This is because sina has a much lower DOM cache hit
rate (~70%) than twitter (~97%), and therefore does not
fully use the low-energy browser engine cache. In contrast,
mobile webpages have more regular access patterns. They all
have a high browser engine cache hit rate, and therefore their
energy savings closely track the DOM/render tree traffic.
Due to the software cache management overhead, the
browser engine cache incurs performance overhead. However,
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Fig. 15: Energy savings with a browser engine cache.

the design decisions that we made (as described in Sec. 5.2)
minimize the software management overhead; on average, the
slowdown for D2 with a 64 KB L1 data cache is only 2.5%.
The slowdown for D1 and D3 with smaller L1 data caches
(8 KB and 32 KB, respectively) is slightly smaller—only 1.6%
and 2.1%, respectively. We speculate that the reason is that
both D1 and D3 have slower performance than D2, and as such,
they amortize the overhead of the software cache management.

6.4. Combined Evaluation

Fig. 16 shows the energy-efficiency improvement for the en-
tire webpage loading on all three designs by progressively
adding the two optimization techniques. The dotted curve
is the Pareto-optimal frontier of the design space discovered
in Sec. 4.2. Comparing the energy-conscious design (D2) with
an existing mobile processor design (D3), we observe that
customization of the general-purpose architecture alone with-
out applying any specialization allows us to achieve 22.2%
performance improvement and 18.6% energy saving.

After applying the browser engine cache, the performance
slightly degrades due to its software management overhead.
Therefore, all the triangles move slightly to the right despite
the energy savings. However, applying the SRU optimization
improves both performance and energy consumption. All the
squares move toward the left corner. In effect, we push the
Pareto-optimal frontier in the original design space to a new
design frontier with significantly better energy efficiency.

On average, the energy-conscious design (D1) benefits by
6.9% and 16.6% for performance improvement and energy
reduction, respectively. The performance-oriented design (D2)
benefits by 9.2% and 22.2% for performance improvement
and energy reduction, respectively. Lastly, the existing mo-
bile processor design (D3) benefits by 8.1% and 18.4% for
performance improvement and energy reduction, respectively.

Because our specializations incur area overhead, we also
compare our results with designs that use the same area over-
head to improve structures in general-purpose cores. Since
instruction delivery and data feeding are the two major bottle-
necks, as discussed in Sec. 4.3, the additional area would be
most cost-beneficial to improve the I-cache and D-cache sizes.
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provement over three designs. caches versus specializations.

As an example, Fig. 17 compares our combined specializa-
tions (WebCore) with designs that increase the I-cache size by
24 KB (I$), D-cache size by 24 KB (I$), and both caches by
12 KB (I+DS$) based on the D2 design. The figure normalizes
the webpage loading time and energy consumption to the D2
design without any specializations. We see that simply im-
proving the cache sizes in general-purpose cores achieves only
negligible performance improvement (<1%) with a slightly
higher energy consumption. However, WebCore specializa-
tions provide significantly better energy efficiency.

7. Discussion

Heterogeneous architecture Our vision of the WebCore is
that it is one core of a heterogeneous multicore SoC, tuned
specifically for Web workloads. Normal workloads can use
regular cores. Different from the typical big/little type of het-
erogeneous processors, WebCore increases the system hetero-
geneity by providing domain-specific hardware specialization.
Recent industry efforts, such as hardware support for WebRTC
in Tegra 4 [24], reinforce this emerging new trend. WebCore
can be integrated with other heterogeneous proposals that im-
prove Web browsing efficiency (such as via scheduling [78]).
Parallelism None of the mainstream Web browsers, such
as Chrome and Firefox, explicitly parallelize browser engine
computations for multiple cores. Multithreading is mostly
only used for resource loading, such as network prefetching
and TCP connections, rather than computation, which is the
focus of this paper. Our measurement results on the Exynos
5410 SoC show that going from 2 to 4 cores doubles the power
consumption while improving performance by only 10%.
Longevity As we see it, the longevity of the WebCore
lies in the following aspects. First, the Web browser is, and
will continue to be, the substrate of many Web applications
due to its “write-once, run-anywhere” feature. Exemplifying
this design philosophy is Google’s recent announcement of
the Portable Native Client (PNaCl). It supports the porting
of native C/C++ applications to the Chrome browser [25].
SkyFire Technology shows that Web applications based on
browser technologies still far outweigh native apps, excluding
games [26]. Even for gaming, we see a burst of advanced
browser-based games owing to the emergence and widespread
adoption of HTMLS5 technologies. New gaming libraries such
as Construct2 [27] make it possible to port entire real-time



physics engines such as the Unreal Engine into a browser [28].
Second, the kernels, their data structures, and the communi-
cation patterns that we study in this paper are not specific to a
particular browser implementation. They are generally found
across different Web browser engines, such as WebKit and
Gecko. In addition, the kernel algorithms and data structures
remain largely unchanged across browser versions. For exam-
ple, the algorithm we study in the Style kernel has remained
almost identical over the past two years, which includes over
10 versions of Chromium. Therefore, we do not expect soft-
ware changes to dramatically impact our hardware design.

8. Related Work

Web browser optimizations Zhu and Reddi propose
scheduling to leverage the big/little heterogeneous system for
optimizing the energy efficiency of mobile Web browsing [78].
WebCore customization and specialization enriches the het-
erogeneity at the core and system level, thus creating more
opportunity for the compiler and operating system scheduling.
Prior software work focuses on parallelizing browser kernel-
s/tasks for improving performance [29,32,41,59, 62—-64]. Our
optimizations target both performance and energy, and can
therefore readily improve the per-thread/task energy efficiency.
Seemingly similar to our work, SiChrome [34] performs ag-
gressive specializations that map much of the Chrome browser
into silicon. The key difference is that we retain general-
purpose programmability while still being energy efficient.
Other works take a system-level perspective on improving
Web browsing performance, such as asynchronous render-
ing, resource prefetching, and refactoring JavaScript and CSS
files [58,73-75,77]. Our work is complementary to them since
they can all benefit from kernel-level efficiency improvements.
‘Web browser workload characterization BBench [47]
is a webpage benchmark suite that includes 11 hot webpages.
Its authors perform microarchitectural characterizations of
webpage loading on an existing ARM system. Although the
authors show that the 11 webpages have distinctly different
characteristics from SPEC CPU 2006, they do not quantify the
comprehensiveness and representativeness of the webpages
against the vast number of webpages “in the wild.” In stark
contrast, our analysis in Sec. 3 systematically proves the broad
coverage of our webpages, which is needed for robustly evalu-
ating the impact of the optimizations that we propose.
MobileBench [65] characterizes the performance impact
of various microarchitecture features on mobile workloads.
Our paper quantifies the performance-energy trade-off. Mo-
bileBench results show that more aggressive customizations
(e.g., prefetcher) of general-purpose cores are worth exploring.
Other works analyze webpage-inherent characteristics to
show the variances across different webpages [36,70,78]. They
imply the potential of adaptive and dynamic specialization
techniques, which are beyond the scope of our current work.
JavaScript Our work is not about JavaScript execution.
However, we found that a significant amount of JavaScript

execution time is spent in the browser’s kernels (~40%). Our
work indirectly studies how the browser engine can improve
JavaScript performance and energy efficiency. There are prior
works on the JavaScript language engine itself, including anal-
ysis [69] and optimizations [45,60,61]. They are separate and
complementary to our work involving the browser engine.

Specialization alternatives 10 caches and scratchpad
memories [33,52] have long been used to reduce data com-
munication overhead by acting as small, fast, and energy-
conserving data storage. The browser engine cache proposed
in this paper demonstrates the effectiveness of such an idea for
mobile Web browsing workloads. We propose to implement
the browser engine cache as a collection of registers where
each register holds exactly one DOM (render) tree attribute. In
contrast, the typical LO cache in mobile SoCs [30] is agnostic
to the application-level data structures. Each LO cache line,
thus, holds more than one DOM attribute, leading to excessive
energy consumption when accessing individual attributes.

In addition, the strong locality of the principal data struc-
tures revealed in our analysis can potentially be captured by
dedicating cache ways to the Web browser application [44,53].
The streaming access pattern of the DOM tree shown in Fig. 13
indicates that a dynamic cache insertion policy such as
DIP [68] or an intelligent linked data structure prefetcher [43]
on L1 data cache are also worth exploring. However, the
browser engine cache we propose aims at saving energy with
minimal loss in performance, which the prior performance-
oriented techniques have not been proven/claimed to provide.

9. Conclusion

Customizations identify the general-purpose baseline architec-
ture that uniquely matches the Web workload’s needs. Special-
izations further pack enough domain-specific computations
(SRU) and support energy-efficient data communication across
kernels (browser engine cache). Altogether, they push the
energy-efficiency frontier of general-purpose mobile proces-
sor designs to a new level for mobile Web browsing workloads.
Such designs are warranted given current mobile processor
architecture trends in a battery-constrained energy envelope.
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